C O L '16 O R

Process Control for Digital Presses

Mike Strickler MSP Graphic Services

#Color2016

Outline

- What's different about digital: the need for color management
- Digital press types and challenges for process control
- Types of color drift: short- v long-term
- Establishing the target condition
- The 4 types of color control software, pros/cons
- Advice and conclusions

co

Not in this presentation:

- Detailed look at sampling and statistics, databases, etc.
- Detailed instructions on building profiles
- Evaluation of commercial PC or CM solutions

Why talk about digital presses at all?

- Fastest growing print sector
- Poorly understood by traditional printers
- Requires a different approach to color control

Digital press types

I. Dry toner electrographic presses

- Examples: Xerox, Canon, Ricoh, etc.
- Approximately gray-balanced
- Fast warmup
- Not particularly stable

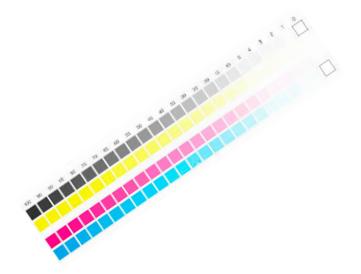
Digital press types

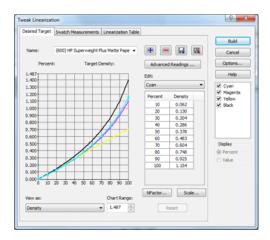
- II. Liquid toner electrographic presses
 - Example: HP Indigo
 - Natively the most "offset-like"
 - Large output gamut with up to 7 colors
 - Fast warmup
 - Requires frequent calibration

Digital press types

III. Inkjet (UV, aqueous, solvent)

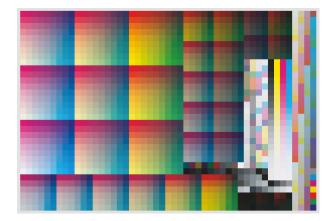
- Example: EFI Jetrion, VUTEk, Agfa Sherpa, Fuji Acuity, many, many others
- No warmup
- Stable output
- No user hardware calibration
- Large output gamut
- Natively not gray balanced (not even close!)

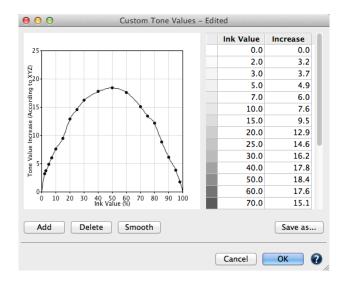

Digital presses must be profiled



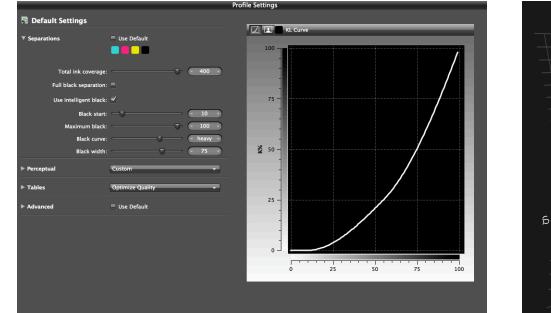
First Steps

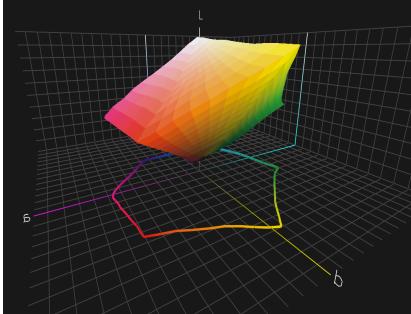
• Device Calibration/system maintenance





First Steps


• Gather good, *typical* output data



First Steps

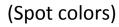
Make the Profile

Setting Expectations

Can you reach the target?

Look at the numbers!

		Colors Graph	n Statistics		
Compare Mode:	DeltaE-2000			🗧 🗌 Display Difference	es 🗌 Fit chart to width
Mark from:			\neg		3
Mark to:					1000
Maximum (ID) = 15.	.45 (1417) / Average = 2.67				


• • •	Maximum = 15.45 (1417) Average = 2.67 Sigma = 1.63 Median = 2.37 Coeff of Variation = 0.61
· · · ·	Worst Patches: 15.45 (1417) 11.97 (1450) 11.15 (1354) 11.02 (1219) 10.78 (1418) 10.41 (1082) 10.35 (1252) 9.87 (1285) 9.75 (1355) 9.39 (1057)
	Distribution: 10% Patches <= 1.0 20% Patches <= 1.3 30% Patches <= 1.6 40% Patches <= 2.0 50% Patches <= 2.4 60% Patches <= 2.8 70% Patches <= 3.3 80% Patches <= 3.9 90% Patches <= 4.6 95% Patches <= 5.5 100% Patches <= 15.4

Look at the numbers!

Configuration: GRACoL2006_to_Indigo_CalGloss_CMYK_M1 Target Profile: Indigo_CalGloss_CMYK_4500_062116_M1-WhiteOrigBacking_300-300.icc

Name	Conversion:	Target Lab	СМУК	Lab	dE00	DeltaE-76
PANTONE 100 C	PANTONE+ Solid Coated-V3	92.04 -7.56 65.78	2.1 0.0 78.1 0.0	90.23 -6.12 65.88	1.4	2.3
PANTONE 101 C	PANTONE+ Solid Coated-V3	91.76 -7.51 75.12	2.1 0.0 86.3 0.0	90.39 -6.10 75.00	1.2	2.0
PANTONE 102 C	PANTONE+ Solid Coated-V3	90.24 -4.87 106.30	0.0 0.0 100.0 0.0	90.48 -4.76 93.67	2.3	12.6
PANTONE 103 C	PANTONE+ Solid Coated-V3	70.15 0.46 83.74	0.0 10.7 100.0 19.5	73.08 1.07 74.54	3.0	9.7
PANTONE 104 C	PANTONE+ Solid Coated-V3	63.55 -0.29 70.66	0.0 12.1 100.0 36.3	64.86 -0.12 65.45	1.7	5.4
PANTONE 105 C	PANTONE+ Solid Coated-V3	51.58 -0.75 45.50	0.0 15.2 94.7 60.1	51.61 -0.72 45.66	0.1	0.2
PANTONE 106 C	PANTONE+ Solid Coated-V3	90.66 -4.13 74.71	0.0 1.2 85.4 0.0	90.74 -4.22 74.64	0.1	0.1
PANTONE 107 C	PANTONE+ Solid Coated-V3	89.83 -2.47 84.14	0.0 3.4 94.4 0.0	89.28 -2.91 84.02	0.4	0.7
PANTONE 108 C	PANTONE+ Solid Coated-V3	88.45 0.62 94.52	0.0 7.3 100.0 0.0	87.98 -0.33 91.91	0.8	2.8
PANTONE 109 C	PANTONE+ Solid Coated-V3	86.28 5.99 98.56	0.0 11.3 100.0 0.0	86.10 2.52 90.10	2.3	9.1
PANTONE 110 C	PANTONE+ Solid Coated-V3	72.59 9.31 88.89	0.0 23.2 100.0 8.4	76.19 8.96 78.76	3.4	10.8
PANTONE 111 C	PANTONE+ Solid Coated-V3	59.30 4.69 68.12	0.0 23.8 100.0 38.5	60.90 4.55 61.44	2.2	6.9
PANTONE 112 C	PANTONE+ Solid Coated-V3	56.17 2.49 57.21	0.0 23.0 100.0 48.9	56.39 2.48 56.29	0.3	0.9
PANTONE 113 C	PANTONE+ Solid Coated-V3	89.72 -1.34 69.52	0.0 4.9 82.4 0.0	89.19 -1.76 69.56	0.4	0.7
PANTONE 114 C	PANTONE+ Solid Coated-V3	89.06 -0.09 75.69	0.0 6.7 88.8 0.0	88.34 -0.68 75.61	0.6	0.9
PANTONE 115 C	PANTONE+ Solid Coated-V3	88.17 1.58 82.46	0.0 8.7 94.9 0.0	87.12 0.74 82.40	0.8	1.3
PANTONE 116 C	PANTONE+ Solid Coated-V3	85.45 8.25 89.48	0.0 16.3 100.0 0.0	83.77 5.93 87.76	1.7	3.3
PANTONE 117 C	PANTONE+ Solid Coated-V3	66.18 11.95 78.63	0.0 29.9 100.0 18.2	68.49 11.10 70.22	2.7	8.8
PANTONE 118 C	PANTONE+ Solid Coated-V3	58.13 8.99 66.32	0.0 31.3 100.0 36.1	59.62 8.55 60.16	2.1	6.4
PANTONE 119 C	PANTONE+ Solid Coated-V3	49.67 2.40 45.85	0.0 25.0 97.2 59.8	49.65 2.39 45.91	0.0	0.1
PANTONE 120 C	PANTONE+ Solid Coated-V3	88.57 2.65 61.10	0.0 10.4 75.9 0.0	87.38 1.90 60.73	0.9	1.5
PANTONE 1205 C	PANTONE+ Solid Coated-V3	89.97 1.42 43.30	0.0 7.9 53.0 0.0	88.83 0.86 43.04	0.8	1.3
PANTONE 121 C	PANTONE+ Solid Coated-V3	87.81 4.16 66.13	0.0 11.8 81.7 0.0	86.17 3.01 65.62	1.3	2.1
PANTONE 1215 C	PANTONE+ Solid Coated-V3	88.03 4.52 54.26	0.0 12.4 69.1 0.0	86.59 3.66 54.14	1.1	1.7
PANTONE 122 C	PANTONE+ Solid Coated-V3	86.43 7.04 73.19	0.0 15.3 90.1 0.0	84.28 5.27 72.95	1.8	2.8
PANTONE 1225 C	PANTONE+ Solid Coated-V3	84.38 12.12 69.90	0.0 22.8 89.5 0.0	81.36 9.71 69.38	2.5	3.9
PANTONE 123 C	PANTONE+ Solid Coated-V3	84.11 12.65 77.82	0.0 23.6 95.9 0.0	81.06 10.05 77.34	2.5	4.0
PANTONE 1235 C	PANTONE+ Solid Coated-V3	80.67 20.70 79.11	0.0 36.9 100.0 0.0	76.87 17.43 78.61	3.2	5.0

Setting the Target

Possible compliance goals:

- Color space (GRACoL2013, Fogra 51, et al)
- Adjusted color space (if target OOG)
- G7 "targeted," "Grayscale"
- Adjusted spot color targets

Four Approaches to Process Control

1. Simple density and linearity calibration

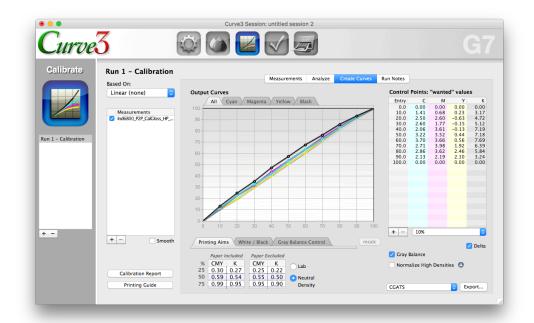


Four Approaches to Process Control

1. Simple density and linearity calibration

1. Simple density and linearity calibration

Pros:


- Familiar to traditional press operators
- Adjusts both solids and TVI

Cons:

- Could be time-consuming
- Cannot adjust gray balance
- Cannot adjust overprints
- May not be accurate enough

2. Gray-balancing curves

2. Gray-balancing curves

Pros:

- Adjusts both tonality and gray balance
- Excellent method for removing obvious color error in images

Cons:

- Does not adjust solids and overprints
- Has little or no impact on strong colors
- May require third-party software and offline measuring

3. "3D," or reprofiling approaches

3. "3D," or reprofiling approaches

22

Pros:

- Overall best accuracy; adjusts tonality, gray balance, overprints, and solids*
- Easy

Cons:

#Color2016

co

OR

- May require third-party software, offline measurements
- Can be time-consuming
- Most apps limited to 4 output channels

4. Lab Optimization

00			Color Tools	
Optimize Profile Step	1: Print chart			
1. Settings	Print			
Step	2: Measure chart			
	ny <u>k</u> na vez			ofr
	Measure	Import Data		Show Patches
Step	Step 3: Optimize			Result
	Average dE Pea	k dE Paper white	Target in Gamut (%)	
	0.83 2.95		96.15	
	0.80 2.94		96.15	Average: Not improved
7	0.82 3.21	0.63	96.15	Peak: Not improved
	Optimize			No further improvements possible.
				Cancel Previous Finish

4. Lab Optimization

Pros:

- Best way to improve match to a reference
- Easy--integrated in a DFE
- Can use a small chart

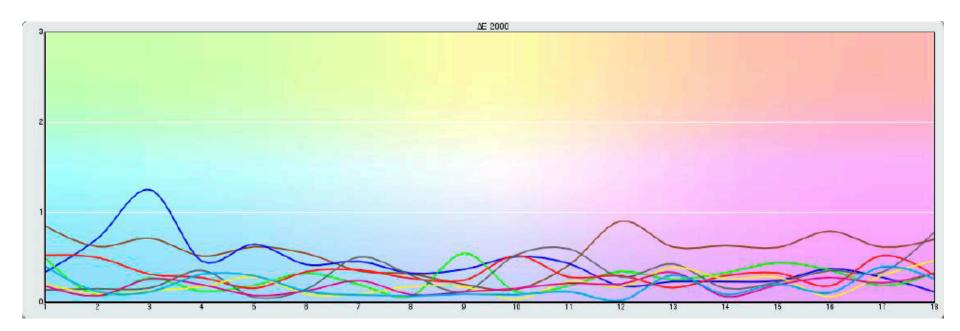
Cons:

- Iterative procedure can be time-consuming
- Specific to one reference print condition
- Not available as standalone application

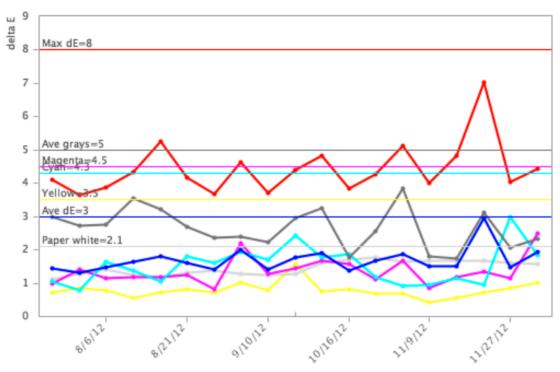
What about more than 4 channels?

Options:

- Relinearization
- Full reprofiling
- Abbreviated reprofiling



Considerations for process control


Short-term variation: The "uncertainty floor"

Long-term color variation

Measurement Dates

Tolerances: Keep it real!

- Historical data for device, substrates
- Established industry specs (e.g., G7 pass-fail)
- Brand owner mandates

Conclusions

- Correct only for longer-cycle drift
- Set appropriate tolerances
- Know the 4 types of color adjustment
- Balance effectiveness and time required, inline v offline
- Consider the type of work: process Images v brand colors, and choose tools accordingly

Thanks

Alder Technology/Bruce Bayne Canon USA Chromix ColorLogic GMBH EFI Fujifilm USA Hewlett Packard Onyx Graphics Paragon Label John Seymour X-Rite

